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ABSTRACT

We show that any homomorphism from the homeomorphism group of

a compact 2-manifold, with the compact-open topology, or equivalently,

with the topology of uniform convergence, into a separable topological

group is automatically continuous.

1. Introduction

A number of results have surfaced in recent years that intimately connect topolo-

gies on transformation groups with the underlying group structure. Of course,

many classical mathematical results, variously formulated as rigidity or re-

construction results, can be viewed in this way. Namely, as saying that if G

is the group of transformations of some mathematical object K, then K can

be completely recovered within its category from G as an abstract group, and

hence any natural transformation group topology on G is also given by the ab-

stract group G. Related to this are results saying that any automorphism of G

is inner and hence given by a transformation of K.

However, recently there have been indications that certain topological groups

might not only be determined by the underlying abstract group, but, in fact,

that the topology is also preserved under homomorphisms. Some indications of

this come from the so-called small index property for separable, complete
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metric groups saying that a subgroup of index < 2ℵ0 is open. This implies that

any homomorphism into the group S∞ of all permutations of N is continuous,

when the latter has been equipped with the topology of pointwise convergence

on the discrete set N. This follows from the fact that the topology of S∞ is

generated by its open subgroups. The small index property has now been proved

for a great number of closed subgroups of S∞ itself (perhaps the most general

result is due to Hodges, Hodkinson, Lascar, and Shelah [HHLS93]), but it also

holds for certain groups that are not topologically isomorphic to subgroups of

S∞, e.g., Homeo(S1) [RoSo07].

Nevertheless, these results put rather heavy restrictions on the target groups,

namely, their topology has to be given by the open subgroups. This condition

was removed by Kechris and the author in [KeRo07], in which it was shown

that for many closed subgroups of S∞ one has a completely general result of

automatic continuity, namely, that any homomorphism from one of these

groups into a separable topological group is continuous. This line of research

was continued by Solecki and the author in [RoSo07] in which this property was

verified for many other groups including Homeo(S1). Thus, one could hope for

this to be true for a general class of homeomorphism groups of manifolds, and

we shall provide the first step here by considering manifolds of dimension 2.

Automatic continuity turns out to have connections with other dynamical

properties of groups and, for example, has provided the only known examples

of discrete groups with the so-called fixed point on metric compacta property,

i.e., discrete groups all of whose actions on compact metric spaces have a fixed

point. We shall not develop any of these relations here, but only refer the reader

to [RoSo07] for more on this.

It is well-known and easy to see that for any compact metric space (X, d), its

group of homeomorphisms is a separable complete metric group when equipped

with the topology of uniform convergence, or equivalently, with the compact

open topology. In fact, a compatible right-invariant metric on Homeo(X, d) is

given by d∞(g, f)=supx∈X d(g(x), f(x)), and a complete metric by d′∞(g, f)=

d∞(g, f)+d∞(g−1, f−1). We denote by B(x, ε) the open ball of radius ε around

x and by B(x, ε) the corresponding closed ball.

If g ∈ Homeo(X, d), supp◦(g) = {x ∈ X : g(x) 6= x} and supp(g) is its

closure, which is called the support of g.

We intend to show here that in the case of compact 2-manifolds, this group

topology is intrinsically given by the underlying discrete or abstract group, in
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the sense that any homomorphism π from this group into a separable group is

continuous.

Theorem 1.1: Let M be a compact 2-manifold and π : Homeo(M) → H a

homomorphism into a separable group. Then π is automatically continuous

when Homeo(M) is equipped with the compact-open topology.

Let us first note the following fact, which follows easily from known results

and helps to clearify the situation.

Proposition 1.2: Suppose G is a topological group. Then the following con-

ditions are equivalent.

(1) Any homomorphism π : G→ Homeo([0, 1]N) is continuous;

(2) any homomorphism π : G→ H into a separable group is continuous.

Proof. As [0, 1]N is a compact metric space, its homeomorphism group is a

(completely metrisable) separable group in the compact-open topology, so (1)

is a special case of (2).

For the other implication, suppose that (1) holds and let H be separable.

Let N be the closed normal subgroup of H consisting of all elements that

cannot be separated from the identity by an open set. Let H/N be the quotient

topological group, which is Hausdorff and separable, and, in particular, any non-

empty open set covers the group by countably many translates. However, it is

an old result (see I.I. Guran [Gu81]) that for Hausdorff groups this condition is

equivalent to being topologically isomorphic to a subgroup of a direct product

of separable metric groups, or equivalently, second countable Hausdorff groups

(by the Birkhoff–Kakutani metrisation Theorem). Also, a result of Uspenskĭı

[Us86] states that any separable metric group is topologically isomorphic to a

subgroup of Homeo([0, 1]N), and we can therefore see H/N as a subgroup of

some power of Homeo([0, 1]N). Thus, as a mapping into the Tikhonov product

is continuous if and only if the composition with each coordinate projection is

continuous, π composed with the quotient mapping is continuous, and hence by

the choice of N , π is also continuous.

However, we shall not make use of this result, but rather simplify matters

by using arbitrary subsets of the group satisfying a certain algebraic largeness

condition (instead of working with arbitrary homomorphisms). LetG be a group

and W ⊆ G be a symmetric set. We say that W is countably syndetic if
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there are countably many left-translates of W whose union cover G. Moreover,

if G is a topological group, we say that G is Steinhaus if for some k ≥ 1 and

all symmetric, countably syndetic W ⊆ G, Int(Wk) 6= ∅. It is not hard to prove

(see, e.g., [RoSo07]) that Steinhaus groups satisfy the equivalent conditions of

Proposition 1.2, and this is the condition that we will verify. Note, however, the

order of quantification; the k is universal for all symmetric, countably syndetic

W . Indeed, the group Homeo+(S1) equipped with the trivial topology τ =

{∅,Homeo+(S1)} satisfies the condition when we have reversed the quantifiers,

but the identity homomorphism into itself equipped with the compact-open

topology is obviously discontinuous.

It is instructive to note from which groups one can construct discontinuous

homeomorphisms. Of course, the first case that comes to mind is (R,+), on

which one can with the help of a Hamel basis, i.e., a basis for R as a Q-vector

space, construct discontinuous automorphisms, and, in fact, construct group

isomorphisms between R and R2. Also if G =
∏

n Fn, where the Fn are finite

non-trivial groups, satisfies automatic continuity, then |Fn| → ∞. For other-

wise, there is some infinite set A ⊆ N such that Fn = Fm for all n,m ∈ A. Let U

be a non-principal ultrafilter on A and set H = {g ∈ G
∣∣ {n ∈ A

∣∣ gn = 1} ∈ U}.

Then H is a non-open subgroup of G of finite index and hence G has a discon-

tinuous homomorphism into a finite group.

We finish this introduction by mentioning a few of the most interesting ques-

tions concerning automatic continuity.

Question 1.3: (1) Is there a compact metrisable group satisfying auto-

matic continuity, i.e., satisfying the equivalent conditions of Proposition

1.2?

(2) What about a locally compact second countable group?

(3) Does the unitary group of separable infinite-dimensional Hilbert space

U(`2) satisfy automatic continuity?

(4) Is Theorem 1.1 true for an arbitrary compact manifold M?

(5) What about compact triangulable manifolds?

Questions (1) and (2) would be a way of producing discrete groups acting

faithfully on separable metric spaces, but such that all of their actions have

compact, respectively, σ-compact orbits. This would be a strenthening in the

separable case of the so called Bergman or strong boundedness property

of a group, saying that any isometric action on a (not necessarily separable)
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metric space has bounded orbits. This property is known to hold for a large

class of groups, e.g., S∞ [Be06], Homeo(Sn) [CaFrCo06], and U(`2) [RiRo07]. I

conjecture that the profinite group
∏

n Alt(2n) should satisfy automatic conti-

nuity. The proofs given by Saxl, Shelah, and Thomas in [SaShTh96, Th99] go

a far way in order to establish this and with a little extra work, one can make

their proofs show also the Bergman property for
∏

n Alt(2n). However, so far I

have not been able to make it show that
∏

n Alt(2n) is Steinhaus and thus that

it satisfies automatic continuity.

Case (3) would, in conjunction with a result of Gromov and Milman [GrMi83],

imply that U(`2) has the fixed point on metric compacta property as a discrete

group.

As can be seen from the proof of Theorem 1.1 below, certain parts of the proof

transfer directly to higher dimensional triangulable manifolds. Unfortunately,

this is not the case throughout and one naturally wonders what happens for

homeomorphism groups of higher dimensional manifolds. Geometric topology

in higher dimensions is well developed and some of the work done around the

annulus conjecture is certainly relevant here. However, the annulus conjecture

by itself is not enough and it is for this reason that we have been forced to use

ad hoc constructions based on Schönflies’ Theorem to get the exact lemmas we

need.

2. The proof

2.1. Commutators. We shall first prove a general lemma about homeomor-

phisms of Rn.

Lemma 2.1: Suppose that g ∈ Homeo(Rn) has compact support. Then there

are f, h ∈ Homeo(Rn) with compact support such that g = [f, h] = fhf−1h−1.

Proof. Fix some open ball U0 ⊆ Rn containing the support of g and let (Um) be

a sequence of disjoint open balls such that for some distinct x0 and x1 in Rn, the

sequences (Um)m≥0 and (U−m)m≥0 converge in the Vietoris topology to x0 and

x1 respectively. We can now find a shift h ∈ Homeo(Rn) with compact support,

i.e., such that h[Um] = Um+1 and define f by letting f |Um = hmgh−m|Um for

m ≥ 0 and setting f = id everywhere else. We now see that

hf−1h−1|Um = h(hm−1g−1h−m+1)h−1|Um = hmg−1h−m|Um, for m > 0
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and

hf−1h−1|Um = h idh−1|Um = id|Um, for m ≤ 0,

while hf−1h−1 = id everywhere else. Therefore, f · hf−1h−1|Um = id|Um for

m > 0, f ·hf−1h−1|U0 = f |U0 = g|U0, f ·hf−1h−1|Um = id|Um for m < 0, and

fhf−1h−1 = id everyhere else. This shows that g = [f, h] = fhf−1h−1.

Notice that in the proof above we use f and h with slightly bigger sup-

port than g. This leads to the question of whether every homeomorphism that

fixes the boundary pointwise can be written as a commutator of two home-

omorphisms that also fix the boundary pointwise. Also, what happens if we

replace pointwise by setwise? Let us mention that the first question has a posi-

tive answer in dimension 1 as, for example, the group of orientation preserving

homeomorphisms of [0, 1] has a comeagre conjugacy class [KuTr00]. The above

result slightly strengthens a result of Mather [Ma71] saying that the homology

groups of the group of homeomorphisms Rn with compact support vanish. One

can of course also extend the lemma to [0,∞[×Rn−1 and thus also improve the

result of Rybicki [Ry96].

2.2. Countably syndetic sets. We will now prove some properties of

countably syndetic sets in the homeomorphism groups of arbitrary manifolds.

These results will allow us to solve our problem for compact two-dimensional

manifolds and provide techniques for higher dimensions. So letM be a manifold

of dimension n and fix a compatible complete metric d on M .

In the following we fix a countably syndetic symmetric subsetW ⊆Homeo(M)

and a sequence km ∈ Homeo(M) such that
⋃

m kmW = Homeo(M).

Lemma 2.2: For all distinct y1, . . . , yp ∈ M and ε > 0, there are ε > δ > 0

and zi ∈ B(yi, ε) such that if g ∈ Homeo(M) has support contained in D =⋃p
i=1B(zi, δ), then g ∈ W 16.

Proof. Notice that it is enough to find zi ∈ B(yi, ε) and open neighbourhoods

Ui of zi such that if g ∈ Homeo(M) has support contained in
⋃

i Ui, then

g ∈ W 16. We choose some open neighbourhood of yi, Ei ⊆ B(yi, ε), that is

homeomorphic to ]0, ε[n. We also suppose that the sets Ei are 4ε-separated.

We will also temporarily transport the standard euclidian metric from ]0, ε[n to

each of the sets Ei. As we will be working separately on each of Ei, this will
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not cause a problem. Thus in the following, the notation B(x, β) will refer to

the balls in the transported euclidian metric, which we denote by d.

Sublemma 2.3: For all ui ∈ Ei and γ > 0 such that d(ui, ∂Ei) > 2γ, there are

γ > α > 0 and xi ∈ ∂B(ui, γ) such that if g ∈ Homeo(M) has support contained

in A =
⋃p

i=1B(xi, α)∩B(ui, γ), then there is an h ∈ W 2 with support contained

in
⋃p

i=1 B(ui, γ) such that g|A = h|A.

Proof. Suppose that u1, . . . , up is given. We fix for each i ≤ p a sequence of

distinct points xi
m ∈ ∂B(ui, γ) converging to some point xi

∞ ∈ ∂B(ui, γ) and

choose a sequence γ/2 > αm > 0 such that B(xi
m, αm) ∩ B(xi

l , αl) = ∅ for any

m 6= l and all i ≤ p. Thus, as αm → 0, we have that if gm ∈ Homeo(M) has

support only in

Am =
(
B(x1

m, αm) ∩B(u1, γ)
)
∪ · · · ∪

(
B(xp

m, αm) ∩B(up, γ)
)

for each m ≥ 0, then there is a homeomorphism g ∈ Homeo(M), whose support

is contained in C = B(u1, γ) ∪ · · · ∪ B(up, γ), such that g|Am = gm|Am. We

claim that for some m0 ≥ 0, if g ∈ Homeo(M) has support contained in Am0
,

then there is an element h ∈ km0
W , with support contained in C, such that

g|Am0
= h|Am0

. Assume toward a contradiction that this is not the case. Then

for every m we can find some gm ∈ Homeo(M) with support contained in Am

such that for all h ∈ kmW , if supp(h) ⊆ C, then gm|Am 6= h|Am. But then

letting g ∈ Homeo(M) have support in C and agree with each gm on Am for

each m, we see that if h ∈ kmW has support in C, then g disagrees with h on

Am. Therefore, g cannot belong to any kmW , contradicting that these cover

Homeo(M).

Suppose that m0 has been chosen as above and denote xi
m0

by xi, Am0
by

A, and αm0
by α. Then for any g ∈ Homeo(M) with support contained in A,

there is an element h ∈ W 2 with support contained in C such that g|A = h|A

for all i ≤ p. To see this, it is enough to notice that we can find h0, h1 ∈ km0
W ,

with supp(h0), supp(h1) ⊆ C, such that g|A = h1|A and id|A = h0|A. But then

h−1
0 h1 ∈ (km0

W )−1km0
W = W−1W = W 2 and g|A = id g|A = h−1

0 h1|A.

We will first apply Sublemma 2.3 to the situation where ui = yi and γ > 0

is sufficiently small. We thus obtain γ > α > 0 and xi ∈ ∂B(yi, γ) such that

if g ∈ Homeo(M) has support contained in A =
⋃p

i=1 B(xi, α) ∩ B(yi, γ), then

there is an h ∈W 2 with support contained in
⋃p

i=1 B(yi, γ) such that g|A = h|A.
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Now, pick y′i ∈ B(xi, α) ∩B(yi, γ) and γ′ > 0 such that

B(y′i, 2γ
′) ⊆ B(xi, α) ∩B(yi, γ).

We now apply Lemma 2.3 once again to this new situation, in order to obtain

γ′ > α′ > 0 and x′i ∈ ∂B(y′i, γ
′) such that if g ∈ Homeo(M) has support

contained in A′ =
⋃p

i=1 B(x′i, α
′) ∩ B(y′i, γ

′), then there is an h ∈ W 2 with

support contained in
⋃p

i=1B(y′i, γ
′) such that g|A′ = h|A′.

Now clearly there is a homeomorphism a ∈ Homeo(M) whose support is

contained in A =
⋃p

i=1B(xi, α)∩B(yi, γ) such that a[B(y′i, γ
′)] = B(x′i, α

′) and

a[B(y′i, γ
′) ∩B(x′i, α

′)] = B(y′i, γ
′) ∩B(x′i, α

′),

and hence we can also find such an a in W 2, except that its support may now

be all of
⋃p

i=1 B(yi, γ).

We therefore have that if g ∈ Homeo(M) has support contained in A′, then

a−1ga also has support contained in A′, and so there is an h ∈ W 2 with

support contained in
⋃p

i=1B(y′i, γ
′) such that a−1ga|A′ = h|A′. But then

g|A′ = aha−1|A′, while

supp(aha−1) = a[supp(h)] ⊆ a

[ p⋃

i=1

B(y′i, γ
′)

]
=

p⋃

i=1

B(x′i, α
′).

We now notice that aha−1 ∈W 6, and thus that if g ∈ Homeo(M) has support

contained in A′ =
⋃p

i=1 B(x′i, α
′) ∩ B(y′i, γ

′), then there is some f ∈ W 6 with

support contained in
⋃p

i=1B(x′i, α
′) such that g|A′ = f |A′.

Finally, suppose that g ∈ Homeo(M) is any homeomorphism having sup-

port contained in
⋃p

i=1 B(x′i, α
′)∩B(y′i, γ

′). Since the sets B(x′i, α
′)∩B(y′i, γ

′)

are homeomorphic to Rn, working separately on each of these sets and notic-

ing that g has compact support, we can invoke Lemma 2.1 to write g as a

commutator [b, c] for some b, c ∈ Homeo(M) whose supports are contained in⋃p
i=1B(x′i, α

′) ∩B(y′i, γ
′) ⊆ A′. Find now h ∈ W 2 agreeing with b on A′ and

with support contained in
⋃p

i=1 B(y′i, γ
′), and, similarly, find f ∈ W 6 agreeing

with c on A′ and with support contained in
⋃p

i=1B(x′i, α
′). Then the set of

common support of h and f is included in A′ on which they agree with b and

c respectively, and we have therefore that [h, f ] = hfh−1f−1 = bcb−1c−1 = g.

In other words, g ∈ W 16. We can therefore finish the proof by choosing some

zi ∈ B(x′i, α
′) ∩B(y′i, γ

′) and letting Ui = B(x′i, α
′) ∩B(y′i, γ

′).



Vol. 166, 2008 AUTOMATIC CONTINUITY 357

2.3. Circular orders. In order to simplify notation, we will consider cir-

cular orders on finite sets. For x, y, z distinct points on S1, y is said to be

between x and z, in symbols B(x, y, z), if going counterclockwise around S1

from x to y one does not pass through z. A finite circular order is just a

ternary relation R on a finite set that is isomorphic to B restricted to a finite

subset of S1. When R is a circular order on a finite set F, we denote for each

x ∈ F its immediate successor and immediate predecessor, i.e., the first elements

encountered by going respectively counterclockwise and clockwise around F, by

x+ and x−. So, e.g., (x+)− = x.

2.4. A quantitative annulus theorem. The proof of our result is tightly

connected with the methods of geometric topology related to the annulus the-

orem. However, the annulus theorem in itself will not suffice in our case, as

we need to do three successive operations. Firstly, we need to operate along

submanifolds with boundaries and secondly to control certain constants in each

step in order that the homeomorphisms corresponding to the operations stay

close to the identity. For the first operation, we need some quatitative estimates

in the annulus theorem, which are easily obtained by varying the standard proof

of the annulus theorem in dimension 2 based on Schönflies’ Theorem. The only

thing that matters about quantitative estimates in that they exist. For the sake

of completeness we include a full proof.

Fix three points v0, v1, v2 ∈ R2 such that for i 6= j, d(vi, vj) = 1, and denote

by 4 the 2-cell consisting of the points lying within the triangle 4v0v1v2. Sup-

pose also that the barycenter of 4 lies at the origin, so that for all λ > 0, λ4

and 4 are concentric triangles, the former with side lengths λ.

Lemma 2.4: Let φ : (1 − 2η)4 → 4 be a homeomorphic embedding satisfying

sup
x∈(1−2η)4

d(x, φ(x)) < η/100,

where η < 1/1000. Then there is a homeomorphism ψ : 4 → 4 that is the

identity outside of (1 − η)4, with supx∈4 d(x, ψ(x)) < 100η, and such that

ψ ◦ φ|(1−2η)4 = id.

Proof. Let ∂(1−η)4 be the boundary of (1−η)4 and pick a finite set of points

F containing (1 − η)v0, (1 − η)v1, (1 − η)v2 and lying in ∂(1 − η)4, such that

when F is equipped with the circular order obtained from going counterclockwise
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around ∂(1−η)4, we have d(x, x+) ∈]20η, 21η[ for all x ∈ F. As 4 is equilateral,

d(x, y) > 20η for all x 6= y in F.

Let now C = φ[∂(1 − 2η)4] be the image of the boundary of (1 − 2η)4, so

C is a simple closed curve. Choose also for each x ∈ F a point x̂ ∈ C such that

the distance d(x, x̂) is minimal. Since supx∈(1−2η)4 d(x, φ(x)) < η/100 and

η/3 < d(x, ∂(1 − 2η)4) < (2η)/3

for all x ∈ ∂(1 − η)4, also d(x, x̂) < η and d(C, ∂(1 − η)4) > η/4.

For all x ∈ F, denote by αx the straight (oriented) line segment from x to x̂

and by βx the straight line segment from x to x+. We also let γ′x be the shortest

path in ∂(1 − 2η)4 from φ−1(x̂) to φ−1(x̂+) and put γx = φ[γ′x].

By definition of x̂, αx intersects C exactly in x̂, intersects ∂(1−η)4 in exactly

x, and therefore αx and γy intersect only if y = x− or y = x. Similarly, none

of the paths βx and γy intersect as they lie in ∂(1 − η)4 and C respectively.

Therefore, for any x ∈ F, Cx = αx �γx �ᾱx+ �β̄x is a simple closed curve beginning

and ending at x. Here ᾱ denotes the reverse path of α and � the concatenation

of paths. By the Schönflies Theorem, R2 \ Cx has exactly two components,

one unbounded and the other Ux bounded, homeomorphic with R2 and with

boundary Cx. Moreover, as the diameter of Cx is bounded by 30η, Cx intersects

∂(1 − η)4 in exactly βx, and the diameter of ∂(1 − η)4 \ βx is 1 − η > 30η,

this means that ∂(1− η)4\ βx lies in the unbounded component. Therefore, if

Rx = Ux = Ux ∪ Cx, we have for x 6= y

Rx ∩Ry =






∅ if y 6= x+ and y 6= x−

αy if y = x+

αx if y = x−

We can now define ψ : 4 → 4 by letting ψ = φ−1 on φ[(1 − 2η)4], ψ = id

on 4 \ (1 − η)4, and, moreover, along the boundaries of Rx construct ψ as

follows: ψ[αx] is the straight line segment from x to φ−1(x̂), ψ[γx] = γ′x, and

ψ[βx] = βx. Then

ψ[Cx] = ψ[αx �γx � ᾱx+ � β̄x] = ψ[αx] �ψ[γx] �ψ[αx+ ] �ψ[βx] = ψ[αx] �γ′x �ψ[αx+ ] �βx

is the boundary of a region Kx homeomorphic to the unit disk D2 and hence,

by Alexander’s Lemma, the homeomorphism ψ from Cx = αx � γx � ᾱx̂ � β̄x to

ψ[αx] � γ′x � ψ[αx+ ] � βx extends to the regions that they bound, i.e., to a homeo-

morphism of Rx with Kx. This finishes the description of ψ and it therefore only



Vol. 166, 2008 AUTOMATIC CONTINUITY 359

remains to proof that supx∈4 d(x, ψ(x)) < 100η. Since ψ = φ−1 on φ[(1−2η)4]

and ψ = id on 4 \ (1 − η)4 it is enough to consider what ψ does to x ∈

(1− η)4\ φ[(1− 2η)4] ⊆
⋃

x∈F
Rx. Now, ψ[Rx] = Kx for all x ∈ F, and hence

it is enough to show that no points in Rx and in Kx are more than 100η apart.

But diam(Rx) < 30η and diam(Kx) < 40η, while Rx ∩Kx 6= ∅, which gives the

desired result. This finishes the proof.

2.5. Patching along a triangulation of a compact 2-manifold. As

Homeo(M) is a separable complete metric group, it is not covered by countably

many nowhere dense sets (this is the Baire category theorem) and hence W

must be dense in some non-empty open set, whereby W−1W = W 2 is dense

in some neighbourhood of the identity in Homeo(M). So fix some η1 > 0 such

that W 2 is dense in

(1) Vη1
= {g ∈ Homeo(M)

∣∣ d∞(g, id) < η1}.

It is a well-known fact, first proved rigorously by Tibor Radó [Ra24], that

any compact 2-manifold can be triangulated. So from now on, we assume that

M is a fixed compact 2-manifold and we pick a triangulation {T1, . . . , Tm} of

M with corresponding homeomorphisms χi : 4 → Ti. By further triangulating

each Ti, we can suppose that the diameter of Ti is less than η1/10 for all i.

Moreover, by first modifying the χi along each edge of 4 and then extending

to the interior of 4 by Alexander’s Lemma, we can suppose that the following

holds. If Ti = χi[4] and Tj = χj [4] have an edge in common, then χi and χj

agree along this edge, i.e., if χi(va) = χj(vα) and χi(vb) = χj(vβ), then for all

t ∈ [0, 1], χi(tva + (1 − t)vb) = χj(tvα + (1 − t)vβ).

Lemma 2.5: For all 0 < η < 1, if h ∈ Homeo(M) has support contained in⋃m
i=1 χi[(1 − η)4], then h ∈W 20.

Proof. Let yi = χi(~0) and choose ε > 0 such that B(yi, ε) ⊆ χi[(1− η)4] for all

i ≤ m. By Lemma 2.2, we can find some 0 < δ < ε and zi ∈ B(yi, ε) such that

if g ∈ Homeo(M) has support contained in
⋃m

i=1 B(zi, δ), then g ∈W 16.

As W 2 is dense in Vη1
, we can find an f ∈ W 2 such that for every i ≤ m,

f [χi[(1 − η)4]] ⊆ B(zi, δ) and thus if h is given as in the statement of the

lemma, supp(fhf−1) = f [supp(h)] ⊆
⋃m

i=1B(zi, ε) and thus g = fhf−1 ∈W 16,

whence h ∈W 20.
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Lemma 2.6: Let δ, η > 0, η < 1/1000 be such that for i ≤ m and x, y ∈ 4,

d(x, y) < 100η → d(χi(x), χi(y)) < δ.

Then there is an α > 0 such that for all g ∈ Vα there is ψ ∈ Vδ ∩W 20 whose

support is contained in
⋃m

i=1 χi[(1 − η)4] and such that for all i ≤ m,

ψ ◦ g|χi[(1−2η)4] = id.

Proof. Fix δ and η as in the lemma. Then for any continuous φ : 4 → 4 such

that supx∈4 d(x, φ(x)) < 100η, we have for every i ≤ m,

sup
y∈Ti

d(y, χi ◦ φ ◦ χ−1
i (y)) = sup

x∈4

d(χi(x), χi ◦ φ(x)) < δ.

Now pick some α > 0 such that for g ∈ Vα and i ≤ m, we have

g ◦ χi[(1 − 2η)4] ⊆ χi[4] = Ti,

whereby χ−1
i ◦ g ◦ χi : (1 − 2η)4 → 4, and such that

sup
x∈(1−2η)4

d(x, χ−1
i ◦ g ◦ χi(x)) < η/100.

By Lemma 2.4 we can find some homeomorphism ψi : 4 → 4 that is the

identity outside of (1 − η)4, that satisfies the estimate supx∈4 d(x, ψi(x)) <

100η, and

ψi ◦ χ
−1
i ◦ g ◦ χi|(1−2η)4 = id.

This implies that for each i ≤ m, χi ◦ ψi ◦ χ
−1
i : Ti → Ti is a homeomorphism

that is the identity outside of χi[(1 − η)4], supx∈Ti
d(x, χi ◦ ψi ◦ χ

−1
i (x)) < δ,

and

χi ◦ ψi ◦ χ
−1
i ◦ g|χi[(1−2η)4] = id.

We can thus define ψ =
⋃m

i=1 χi ◦ψi ◦χ
−1
i ∈ Homeo(M) and notice that ψ ∈ Vδ

and ψ ◦ g|χi[(1−2η)4] = id for every i ≤ m. We see that ψ has its support

contained within the set
⋃m

i=1 χi[(1 − η)4] and thus, by Lemma 2.5, ψ belongs

to W 20.

Fix some 0 < τ < 1/100. We now define the following set of points in

4 (see figure 1): For distinct i, j = 0, 1, 2, we put wij = (1 − 10τ)vi + 10τvj ,

w+
ij = (1−9τ)vi+9τvj , uij = (1−τ)wij and u+

ij = (1−τ)w+
ij . So wij , w

+
ij ∈ ∂4,

while uij , u
+
ij ∈ ∂(1 − τ)4.
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Figure 1

We also define a number of paths as follows (see figure 2):

• αij is the straight line segment from uij to wij .

• βij is the straight line segment from wij to w+
ij .

• γij is the straight line segment from u+
ij to w+

ij .

• ζij is the straight line segment from uij to u+
ij .

• κij is the straight path from wij to wji.

• ωij is the straight path from uij to uji.

• ξ0 is the shortest path in ∂(1 − τ)4 from u+
02 to u+

01.

• ξ1 is the shortest path in ∂(1 − τ)4 from u+
10 to u+

12.

• ξ2 is the shortest path in ∂(1 − τ)4 from u+
21 to u+

20.

• θ0 is the shortest path in ∂4 from w+
02 to w+

01.

• θ1 is the shortest path in ∂4 from w+
10 to w+

12.

• θ2 is the shortest path in ∂4 from w+
21 to w+

20.
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We thus see that

Cij = κij � αji � ωji � αij

is a simple closed curve bounding a closed region Rij = Rji ⊆ 4,

C+
ij = βij � κij � βji � γji � ζji � ωji � ζij � γij

is a simple closed curve bounding a closed region R+
ij = R+

ji ⊆ 4 that contains

Rij .
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Notice however that the preceding definitions depend on the choice of τ , which

is also the case for the following lemma.

Lemma 2.7: If φ ∈ Homeo(M) has support contained in
⋃m

l=1

⋃
0≤i<j≤2 χl[R

+
ij ],

then φ ∈W 20.

Proof. We notice that for distinct l, l′, χl[R
+
ab]∩χl′ [R

+
a′b′ ] 6= ∅ if and only if the

triangles Tl and Tl′ have the edge χl[vavb] = χl′ [va′vb′ ] in common. Moreover,

in this case, the set χl[R
+
ab] ∪ χl′ [R

+
a′b′ ] is homeomorphic to the unit disk D2

and is contained in an open set homeomorphic to R2.

So let A1, . . . , A 3m

2
be an enumeration of all the closed sets χl[R

+
ab]∪χl′ [R

+
a′b′ ]

with χl[R
+
ab] and χl′ [R

+
a′b′ ] overlapping and let Ui ⊆M be an open set containing

Ai, homeomorphic to R2. We can suppose that the Ui are all pairwise disjoint.
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Moreover, as the diameter of each Tj is at most η1/10, the diameter of each Ai

is at most η1/5.

The proof is now very much the same as the proof of Lemma 2.5. Let yi ∈ Ai

and choose 0 < ε < η1/5 such that B(yi, ε) ⊆ Ui for all i ≤ m. By Lemma 2.2,

we can find some 0 < δ < ε and zi ∈ B(yi, ε) such that if g ∈ Homeo(M) has

support contained in
⋃m

i=1B(zi, δ) then g ∈W 16.

As W 2 is dense in Vη1
, we can find an f ∈ W 2 such that for every i ≤ 3m/2,

f [Ai] ⊆ B(zi, δ) and thus if φ is given as in the statement of the lemma,

supp(fφf−1) = f [supp(φ)] ⊆
m⋃

i=1

B(zi, ε),

and thus g = fφf−1 ∈W 16, whence φ ∈W 20.

Lemma 2.8: There is a ν > 0 such that if g ∈ Vν and g is the identity on

m⋃

i=1

χi[(1 − τ)4],

then there is a φ ∈W 20 such that φ ◦ g is the identity on

m⋃

i=1

χi[(1 − τ)4] ∪
m⋃

l=1

⋃

0≤i<j≤2

χl[Rij ].

Proof. Consider the closed set M0 = M \ Int(
⋃m

i=1 χi[(1 − τ)4]) and the closed

subgroup H = {g ∈ Homeo(M) : g|⋃m

i=1
χi[(1−τ)4] = id}. Assume that Tl and

Tl′ have an edge in common, i.e., χl(va) = χl′(va′) and χl(vb) = χl′(vb′ ) for some

a, a′, b, b′. Then χl[Rab]∪ χl′ [Ra′b′ ] ⊆ IntM0
(χl[R

+
ab]∪χl′ [R

+
a′b′ ]). Therefore, we

can find some ν > 0, not depending on the particular choice of l, l′, a, a′, b, b′,

such that for all such choices of l, l′, a, a′, b, b′ and g ∈ Vν ∩H we have

g[χl[Rab] ∪ χl′ [Ra′b′ ]] ⊆ IntM0
(χl[R

+
ab] ∪ χl′ [R

+
a′b′ ]).(2)

Fix some g ∈ Vν ∩H .

Assume now that χl[4] and χk[4] have an edge in common. For concreteness

we can suppose that, e.g., χl(v0) = χk(v1) and χl(v1) = χk(v2). As the cov-

ering mappings χi were supposed to agree along their edges, this implies that

χl[β01] = χk[β12], χl[κ01] = χk[κ12], and χl[β10] = χk[β21]. Also, as g ∈ H , g is

the identity on the paths χl[ζ01], χl[ω01], χl[ζ10], χk[ζ12], χk[ω12] and χk[ζ21].

By consequence, χl[ζ01] � χl[γ01] � χk[γ12] � χk[ζ12] and χl[α01] � χk[α12] are

paths from χl(u01) to χk(u12) only intersecting in their endpoints. Similarly,
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χl[ζ10] � χl[γ10] � χk[γ21] � χk[ζ21] and χl[α10] � χk[α21] are paths from χl(u10) to

χk(u21) only intersecting in their endpoints. This shows that

K = χl[ζ01] � χl[γ01] � χk[γ12] � χk[ζ12] � χk[α12] � χl[α01]

is a simple closed curve and thus, by the Schönflies Theorem, bounds a region

A homeomorphic to the unit disk D2. Similarly,

K′ = χl[ζ10] � χl[γ10] � χk[γ21] � χk[ζ21] � χk[α21] � χl[α10]

is a simple closed curve and thus bounds a region A′ homeomorphic to the unit

disk D2.

Now, as χl[α01] � χk[α12] ⊆ χl[R01] ∪ χk[R12], by condition 2 on g,

g[χl[α01] � χk[α12]] ⊆ IntM0
(χl[R

+
01] ∪ χk[R+

12])

and hence intersects χl[ζ01] � χl[γ01] � χk[γ12] � χk[ζ12] only in their common

endpoints. Thus,

L = χl[ζ01] � χl[γ01] � χk[γ12] � χk[ζ12] � g[χk[α12]] � g[χl[α01]]

is a simple closed curve bounding a region B homeomorphic to D2. Similarly,

L′ = χl[ζ10] � χl[γ10] � χk[γ21] � χk[ζ21] � g[χk[α21]] � g[χl[α10]]

bounds a region B′ homeomorphic to D2.

We now have two decompositions of χl[R
+
01] ∪ χk[R+

12].

(1) A ∪
[
χl[R01] ∪ χk[R12]

]
∪A′.

(2) B ∪ g[χl[R01] ∪ χk[R12]] ∪B′.

Here A and χl[R01] ∪ χk[R12] overlap along the edge

χl[α01] � χk[α12],

χl[R01] ∪ χk[R12] and A′ overlap along χl[α10] � χk[α21], while A ∩ A′ = ∅.

Similarly, B and g[χl[R01] ∪ χk[R12]] overlap along the edge

g[χl[α01]] � g[χk[α12]],

g[χl[R01]∪χk[R12]] and B′ overlap along g[χl[α10]]�g[χk[α21]], while B∩B′ = ∅.

We can now define a homeomorphism

ϕlk : χl[R
+
01] ∪ χk[R+

12] → χl[R
+
01] ∪ χk[R+

12],

by first setting ϕlk = g−1 on g[χl[R01] ∪ χk[R12]], and then let ϕlk send B to

A, while fixing each point of χl[ζ01] � χl[γ01] � χk[γ12] � χk[ζ12] and be g−1 on

g[χl[α01] � χk[α12]]. Similarly for B′ and A′.
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This can be done for all pairs of χl and χk with a common edge, and we thus

produce homeomorphisms ϕlk on all of the regions, similar to χl[R
+
01]∪χk[R+

12],

that fix each point of the boundary curve

χl[ω10] �χl[ζ10] �χl[γ01] �χk[γ12] �χk[ζ12] �χk[ω12] �χk[ζ21] �χk[γ21] �χl[γ10] �χl[ζ10].

Pasting all of these ϕlk together and extending to all of M by setting φ = id

elsewhere, we obtain a homeomorphism φ ∈ Homeo(M) whose support

is contained in
⋃m

l=1

⋃
0≤i<j≤2 χl[R

+
ij ], while being the inverse of g on⋃m

l=1

⋃
0≤i<j≤2 χl[Rij ]. By Lemma 2.7, φ ∈ W 20, which finishes the proof.

We are now ready to finish the proof of Theorem 1.1 using the preceding

sequence of lemmas.

Proof. Let y1, . . . , yp ∈ M be the vertices of the triangulation and choose

for each i ≤ p a neighbourhood Ui of yi homeomorphic to R2. Find also

0 < ε < η1 such that B(yi, ε) ⊆ Ui for all i. By Lemma 2.2, there are

0 < δ0 < ε, zi ∈ B(yi, ε), such that if g ∈ Homeo(M) has support contained

in
⋃p

i=1B(zi, δ0), then g ∈ W 16. As yi, zi ∈ Ui ' R2, we can, as W 2 is dense

in Vη1
, find some h0 ∈ W 2 such that h0(yi) ∈ U ′

i ⊆ B(zi, δ0), where U ′
i is a

neighbourhood of zi homeomorphic to R2. Therefore, there is some g0 ∈ W 16

such that g0h0(yi) = zi. This shows that if f ∈ Homeo(M) has support con-

tained in U = (g0h0)
−1[

⋃p
i=1], then (g0h0)

−1f(g0h0) has support contained in⋃p
i=1B(zi, δ0) and hence belongs to W 16. So f belongs to W 52. We notice that

U is an open set containing y1, . . . , yp.

Recall now the definition of the paths αij , βij , etc. and also the fact that these

paths all depend on the choice of 0 < τ < 1. For a fixed choice of τ , we define

the following simple closed curves in 4

Fτ
0 = β02 � θ0 � β01 � α01 � ζ01 � ξ0 � ζ02 � α02,

Fτ
1 = β10 � θ1 � β12 � α12 � ζ12 � ξ1 � ζ10 � α10,

Fτ
2 = β21 � θ2 � β20 � α20 � ζ20 � ξ2 � ζ21 � α21.

(3)

Moreover, we let F τ
0 , F

τ
1 , F

τ
2 be the closed regions that they enclose. We notice

that F τ
i converges in the Vietoris topology to {vi} when τ → 0, and thus for

some τ > 0, we have for all i = 0, 1, 2 and l = 1, . . . ,m, χl[F
τ
i ] ⊆ U . So fix this

τ and denote F τ
i by Fi. We notice that

4 = (1 − τ)4∪
⋃

0≤i<j≤2

Rij ∪
⋃

i=0,1,2

Fi.
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By consequence, if f ∈ Homeo(M) is the identity on

m⋃

i=1

χi[(1 − τ)4] ∪
m⋃

l=1

⋃

0≤i<j≤2

χl[Rij ],

then f has support contained in
⋃m

l=1

⋃
i=0,1,2 χl[Fi] ⊆ U , and hence f ∈W 52.

Find now a ν > 0 as in the statement of Lemma 2.8. Then if g ∈ Vν and g

is the identity on
⋃m

i=1 χi[(1 − τ)4], then there is a φ ∈ W 20 such that φ ◦ g is

the identity on
m⋃

i=1

χi[(1 − τ)4] ∪
m⋃

l=1

⋃

0≤i<j≤2

χl[Rij ],

and hence belongs to W 52. But then also g ∈ W 72.

Fix δ < ν/2 and find an η > 0 satisfying η < 1/1000, η < ν/2, and such that

for i ≤ m and x, y ∈ 4,

d(x, y) < 100η → d(χi(x), χi(y)) < δ.

By Lemma 2.6, we can find an 0 < α < ν/2 such that for all h ∈ Vα there is

ψ ∈ Vδ ∩W 20 such that for all i ≤ m,

ψ ◦ h|χi[(1−2η)4] = id.

In particular, ψ ◦h∈VδVα⊆Vδ+α⊆Vν and is the identity on
⋃m

i=1 χi[(1 − τ)4],

whereby ψ ◦ h ∈ W 72 and h ∈ W 92. This shows that Vα ⊆ W 92 and thus

W 92 contains an open neighbourhood of the identity in Homeo(M), and hence

we have proved that Homeo(M) is Steinhaus, which finishes the proof of The-

orem 1.1.

References

[Be06] G. M. Bergman, Generating infinite symmetric groups, The Bulletin of the Lon-

don Mathematical Society 38 (2006), 429–440.

[CaFrCo06] D. Calegari and M. Freedman, Distortion in transformation groups, With an

appendix by Yves de Cornulier. Geometry and Topology 10 (2006), 267–293.

[GrMi83] M. Gromov and V. D. Milman, A topological application of the isoperimetric

inequality, American Journal of Mathematics 105 (1983), 843–854.

[Gu81] I. I. Guran, Topological groups similar to Lindelöf groups, (Russian) Doklady
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